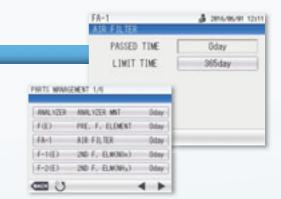


STACK-GAS ANALYSIS SYSTEM


ENDA-C9000

Enhanced functions for maintenance

Simple maintenance function

The built-in hour meter allows you to check the operating times of many different sampling parts. You can also optionally specify the operating limit to monitor parts' lifespans. As parts that are approaching the ends of their lifespans are listed, anyone can easily monitor the operating status of diverse parts and perform scheduled maintenance.

Data logging

You can easily analyze past data as needed because the product saves data from the previous seven days. It includes not only measured concentration values but also a variety of measurement data.

Major saved items

- · Input status at external contact · Sample gas pressure
- Suction pressure Bypass flow rate
- Electric cooler temperature Inner cabinet temperature

Trend charts

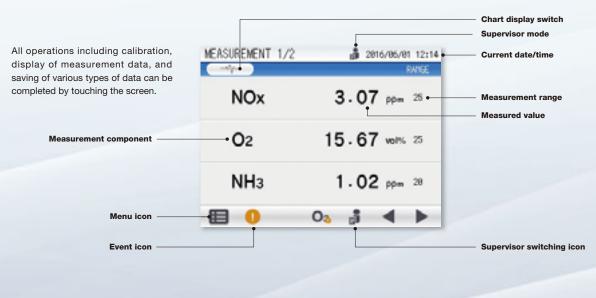
You can visually check the changes in indication during measurement of sample gas or introduction of calibration gas. Measurement data per component for the previous 30 minutes is displayed at once in chart form. You can specify intervals of 3, 15, or 30 minutes and monitor the situation so that not even minute fluctuations are overlooked.

Self-diagnostic function

- Calibration alert
- Flow rate alert
- Pressure alert
- Temperature alertSolenoid valve error
- Caution function

- Detector temperature alert
- Concentration upper/lower limit alert
- Rise in water level
- Power cutoff
- Drop in cylinder pressure (option)

Improved work efficiency by simplifying piping configurations

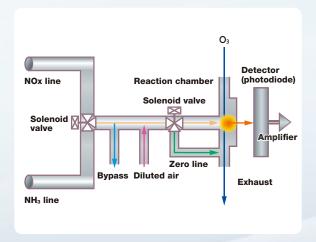

Thanks to the enhanced sampling system, the heating pump no longer requires a cooling section. This enables a direct connection between the heating pump and cabinet, which improves installation work efficiency while preventing pipes from freezing during severely cold weather.

Stress-Free Operability

Adoption of a color touch panel

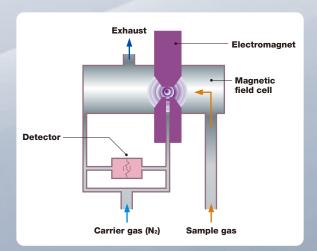
The LCD screen offers better visibility by clearly displaying text and enabling charts to be displayed.

Also, a variety of operation screens are provided in color and can be recognized at a glance. Experience smooth usability by directly touching the screen without the need to perform complicated operations.



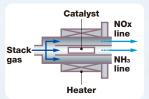
Œ

screen.


Long-term, Stable Operation

Chemiluminescence method analyzers with zero drift free (NH₃ and NOx)

- A single analyzer measures and calculates the NOx concentration that passes through each NOx line and NH₃ line.
- High-precision measurement of NH₃ and NOx in the minimum range of 0 to 10 ppm is supported.
- Less interference effect from moisture and CO₂.
- The analyzer can be used even if the concentration of NH₃ exceeds that of NOx.
- · Reduction catalyst method
- Oxidation catalyst method (for mono fuel combustion of LNG)


Deterioration-resistant magnetopneumatic O2 analyzer

- Zero drift free
- The detector has a long lifespan because sample gas does not come into contact with it.

Reduction catalyst method NH₃ analyzer

The reduction catalyst method employs the principle of the selective catalytic reduction method, which is used to denitrate boilers and turbines. NH₃ reacts with NO at a 1:1 ratio during the denitration reaction on the

catalyst. In other words, the decrease in concentration is the same for NOx and NH $_3$. Therefore, this NH $_3$ analyzer measures the concentration of NOx in the NH $_3$ line that passes through the catalyst as well as the concentration of NOx that does not pass through the catalyst, and then calculates the difference to determine the concentration of NH $_3$. As shown in the figure, the structure of the pretreatment equipment consists of an NH $_3$ line filled with the catalyst and an NOx line not filled with the catalyst.

Oxidation catalyst method NH₃ analyzer (for mono fuel combustion of LNG)

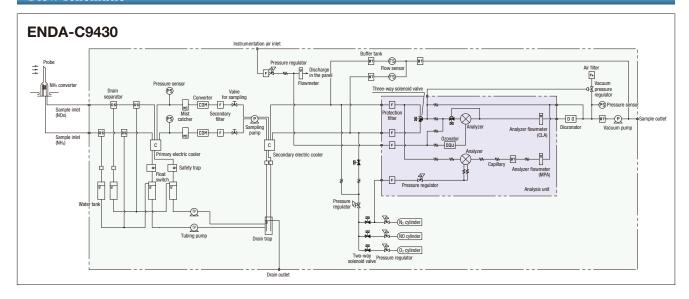
The oxidation catalyst method makes use of conversion of NH_3 in the sample gas to NO. When the gas passes through the catalyst, the increase in concentration is the same for NOx and NH_3 . Therefore, this NH_3 analyzer measures the concentration of NOx in the NH_3 line that passes through the catalyst as well as the concentration of NOx that does not pass through the catalyst, and then calculates the difference to determine the concentration of NH_3 .

Secured sampling control

Improvement of sampling parts

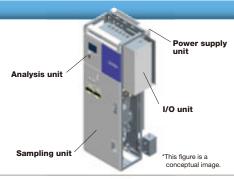
The quality of the electric cooler, double-head pump, diozonator, and other parts has been improved. Better basic performance enables these parts to improve measurement stability.

Monitoring of sample gas pressure


The sample gas pressure has been newly adopted as a monitored item for detecting pipe clogging before it occurs.

Enhanced sample gas pressure control

In the ENDA-C9000 Series, the drain treatment method has been changed from the water sealing method to the tubing pump method, which offers resistance to fluctuations in sample gas pressure. This doubles the range of sample gas pressure to $\pm\,10$ kPa compared to our previous model. As a result, you can now perform measurement under a wider range of sample gas pressure conditions.


Specification ENDA-C9000 series													
ENDA-USUUU SEHES		NH ₃ N0x 0 ₂	C9120	C9170*1 C9170A*2	C9220	C9330*1 C9330A*2	C9430*1 C9430A*2		Reduction catalyst method is applied Oxidation catalyst method is applied				
M		U2				<u> </u>					_		
Measured components and ranges		Component NH ₃		Measuremen			Std. range 20 -100ppm		Option range 10ppm	Range ratio	_		
•		NOx		Chemilumin			20 -100ppm		10ppm	Max. 10 times	_		
		02		Magneto Pn	eumatic		5 - 25vol%		-	Max. 5 times	_		
Number of range		Max. 3 ranges per	Max. 3 ranges per component										
Number of measured compor	nents	Max. 3 component	s includir	g O ₂ analyz	er								
		Ambient temperature -5 to 40 °C Ambient temperature 40 to 50 °C) °C			
Repeatability	±0.5 % of full scale	±0.5 % of full scale											
Drift (±5 °C ambient temperature changes)		Zero drift standard: ±1.0% of full scale per week Zero option: ±2.0% of full scale per week Span standard: ±2.0% of full scale per week						Zero drift standard: ±2.0% of full scale per week Zero option: ±2.0% of full scale per week					
Response time		< N0x only or N0x/0 $_2$ > Td+T $_{90}$ = 70 s max. from analyzer inlet, Td+T $_{90}$ = 40 s max. from calibration inlet											
lineath.		< With NH ₂ > Td+T ₉₀ = 90 s max. from analyzer inlet, Td+T ₉₀ = 70 s max. from calibration inlet											
Linearity		±1.0 % of full scale		al. 1 +- 00	dous\				(The coliberties	a atornal in the section 1	No.		
Calibration gas		Automatic calibration (interval: 1 to 99 days) Zero gas: N ₂ gas cylinder O ₂ reference gas: N ₂ gas cylinder Span gas: measurement component gas cylinder (For NO gas use NH ₂ analyser) (The calibration gas can be stored in the cabinet. However, the storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet will exceed 40°t to storage is not possible if the temperature inside the cabinet wil											
Materials exposed to gas		SUS-304, SUS-316	, PTFE, P	olypropyler	ne, Polyeth	ylene, Fluo	ro-rubber, P\	VC, P\	VDF, and glass				
Withstand voltage		AC 2000 V / 1 minu	ıte										
Display		Screen switching using touch panel											
Sampling method		Dehumidified sampling at dew point of 2.5°C (2 electronic coolers and depressurized sampling)											
Flow rate and pressure of		Flow rate: < when NOx only or NOx/O ₂ > 2.0L/min, <when nh<sub="">3 also included> 1.5L/min for both NOx and NH₃ line</when>											
sample gas		Pressure: ±10 kPa Back pressure: ±0.98 kPa											
Pressure control method		Depressurized sampling method using pressure regulator											
Power voltage		AC 100 V ±15%, 50/60 Hz ±5%											
Analog input and output	Input	Standard max. 4ch	, 4 to 20	mA or 0 to	1 V								
	Output	4 to 20 mA DC, 0 to Insulation of conne Maximum load resi Output impedance	ection of 1 to 3 lines from combination of one of these; to 20 mA DC, 0 to 16 mA DC, and 1 to 5 V DC and 0 to 1 V DC ulation of connection board: 1500 V (400 V lighthing arrester of 400 V) ximum load resistance at the current output: $750~\Omega$ to the first impedance when voltage output: $50~\Omega$ (0 to 1 V), $250~\Omega$ (1 to 5 V)										
External contact input and output	Input	Standard max. 14 ch (AlC start, switch O_2 conversion correction, analog output hold, blowback start, each range L/H) Contact input: 24 V / 10 mA (including the error, 9 to 13 mA) Max. load resistance: O_1 0 O_2 1 Max. load resistance: O_2 1 O_2 2 O_3 3 O_3 4 O_3 5 O_3 5 O_3 6 O_3 7 O_3 7 O_3 7 O_3 8 O_3 9											
	Output	Standard max. 10 ch (in-calibration, in-maintenance, analyzer alarm, analyzer caution each range L/H) Contact capacity DC voltage drive Max. voltage: 125 V, Max. current: 1A, Max. switching capacity: 25 VA, AC voltage drive Max. voltage: 250 V, Max. current: 1A, Max. switching capacity: 250 VA, Insulation of connection board: 1500 V (400 V lighthing arrester is installed for the contact input circuit)											
Cabinet		Standalone type for Plate thickness: 3.2 Door: Front and bar	2 mm for	steel plate	s of main u		nd top plate						
Color		Munsell 5Y 7/1 ser		_									
Sample inlet tube		PTFE tube (φ 8/6)											
External dimensions (mm)		,,,,,		H) (excludio	na protruci	ons)							
Mass		800 (W) × 800 (D) × 1800 (H) (excluding protrusions) 450 kg (exclusing cylinders, depends on specifications)											
Probe and filter of sampling point		Frange: JIS 10 K, 125 AFF Probe tube length: 1000 mm, Material: SUS-304 Element: SUS-304 + sintered wire mesh 10µm in thickness Electric heating: 800 VA (reduction catalyst method) and 1200 VA (oxidation catalyst method) with drip-proof case Catalyst reaction efficiency: more thank 95% (catalyst reaction method), more than 90% (oxidation catalyst method)											
Installation requirements	Ambient temperature: -5 to 40 °C (without exposure to direct sunlight and radiant heat) -15 to 50 °C specification is an option Ambient humidity: 90 % or less												
Sample conditions		Temperature: 300 Dust: 0.1g/Nm³ or N0: 500 ppm or let S02: 200 ppm or let S03: 10 ppm or let S05: 500 ppm or let H20: 4 to 20 voll% of For reduction catal Corrosive gases su	less (reductions CO2: less (reductions CO2: less CO2: less CO2: less CO3:	tion catalyst on catalyst 15 vol% o 0 ₂ : 2 vol% od, NH ₃ con	less st method), method), r less or more centration	15 ppm or 1/10 of SO should be	less (oxidation o	ion ca cataly	est method)				

Flow schematic

System composition

The inner structure of the cabinet is a combination of the analysis section, I/O section, power supply section, and sampling section. Such a structure simplifies work through per-unit maintenance as well as replacement of the unit itself, and the structure was designed in consideration of customers' workloads. If you would prefer to update only the internal components while keeping the cabinet of the gas analyzer that you currently own, we also can provide a unit layout arranged to support your current cabinet.

The HORIBA Group adopts IMS (Integrated Management System) which integrates Quality Management System ISO9001, Environmental Management System ISO14001, and Occupational Health and Safety Management System OHSAS18001. We have now integrated Business Continuity Management System ISO22301 in order to provide our products and services in a stable manner, even in emergencies

Please read the operation manual before using this product to assure safe and proper handling of the product.

- The specifications, appearance or other aspects of products in this catalog are subject to change without notice.
- •Please contact us with enquiries concerning further details on the products in this catalog.
- The color of the actual products may differ from the color pictured in this catalog due to printing limitations.
- •It is strictly forbidden to copy the content of this catalog in part or in full.
- ●The screen displays shown on products in this catalog have been inserted into the photographs through compositing.
- •All brand names, product names and service names in this catalog are trademarks or registered trademarks of their respective companies.

http://www.horiba.com e-mail: info@horiba.co.jp

HORIBA, Ltd.	Japa
Head Office	
2 Miyanohigashi, Kisshoin, Minami-ku, Kyoto, Japan	
Phone: 81 (75) 313-8121 Fax: 81 (75) 321-5725	

HORIBA (China) Trading Co., Ltd. China Shanghai

Unit D. 1F. Building A. Synnex International Park, 1068 West

Tianshan Road, Shanghai, 200335, China Phone: 86 (21) 6289-6060 Fax: 86 (21) 6289-5553

12F, Metropolis Tower, No.2, Haidian Dong 3 Street, Beijing, 100080, China

Phone: 86 (10) 8567-9966 Fax: 86 (10) 8567-9066

HORIBA Korea Ltd. Korea Dogok-Ro, 6-Gil, Gangnam-Gu, Seoul-Si, 06259, Korea

Phone: 82 (2) 753-7911 Fax: 82 (2) 756-4972

HORIBA Instruments (Singapore) Pte Ltd. Singapore 3 Changi Business Park Vista #01-01 Akzonobel House, Singapore 486051

Phone: 65 (6) 745-8300 Fax: 65 (6) 745-8155

HORIBA Vietnam Co., Ltd. Vietnam

Unit 6, 10 Floor, CMC Tower, Duy Tan Street, Dich Vong Hau Ward, Cau Giav District, Hanoi, Vietnam Phone: 84 (4) 3795-8552 Fax: 84 (4) 3795-8553

HORIBA (Thailand) Ltd. Thailand

850 / 7 Soi Lat Krabang 30 / 5, Lat Krabang Road, Lat Krabang, Bangkok 10520, Thailand

Phone: 66 (0) 2734 4434 Fax: 66 (0) 2734 4438

PT HORIBA Indonesia Indonesia

JI. Jalur Sutera Blok 20A, No.16-17, Kel. Kunciran, Kec. Pinang Tangerang-15144, Indonesia

Phone: 62 (21) 3044-8525 Fax: 62 (21) 3044-8521

HORIBA India Private Limited India Delhi

246, Okhla Industrial Estate, Phase 3 New Delhi-110020, India Phone: 91 (11) 4646-5000 Fax: 91 (11) 4646-5020

D-255, Chakan MIDC Phase-II, Bhamboli Village, Pune-410501, India Phone: 91 (21) 3567-6000

Bangalore

No.55, 12th Main, Behind BDA Complex, 6th sector, HSR Layout, Bangalore South, Bangalore-560102, India Phone: 91 (80) 4127-3637

HORIBA Instruments Inc. USA

Head Office

9755 Research Drive, Irvine, CA 92618, U.S.A. Phone: 1 (949) 250-4811 Fax: 1 (949) 250-0924 Alvin, TX

5318 W.FM517 Rd, Alvin, TX 77511, U.S.A Phone: 1 (281) 482- 4334 Fax: 1 (281) 614-0303

HORIBA Instruments Brazil, Ltda.

Rua: Presbitero Plinio Alves de Souza, 645, Loteamento Polo Multivias Barirro Medeiros-Jundiai Sao Paulo CEP 13.212-181 Brazil

Phone: 55 (11) 2923-5400 Fax: 55 (11) 2923-5490

HORIBA France SAS France

Brazil

UK

Les Ulis

12. Av des Tropiques Hightec Sud, F-91955 Les Ulis, France Phone: 33 (1) 69-29-96-23 Fax: 33 (1) 69-29-95-77

HORIBA UK Limited

Northampton

Kvoto Close Moulton Park, Northampton NN3 6FL, UK Phone: 44 (1604) 542-500 Fax: 44 (1604) 542-699

HORIBA Europe GmbH Germany

Head Office

Hans-Mess-Str.6 D-61440 Oberursel Germany Phone: 49 (6172) 1396-0 Fax: 49 (6172) 1373-85 Leichlingen

Julius-kronenberg Str.9 D-42799 Leichlingen Germany Phone: 49 (2175) 8978-0 Fax: 49 (2175) 8978-50

HORIBA Czech Czech Prumyslova 1306 / 7, CZ-10200, Praha 10, Czech Republic

Phone: 420 (2) 460-392-65

HORIBA (Austria) GmbH Austria

Kaplanstrasse 5 A-3430 Tulin, Austria Phone: 43 (2272) 65225 Fax: 43 (2272) 65230

Printed in Japan 1702SK52

